Presenter

Heidi Adams
Community Outreach Specialist
Center for Sight & Hearing
Demystifying Assistive Listening Devices

Based on work by
Cheryl D. Davis, Ph.D.
WROCC Outreach Site at Western Oregon University

http://www.wou.edu/nwoc/demyst.htm
PEPNet Regional Centers
Things to investigate

- Why an ALD?
- Components
- Wireless systems
- Troubleshooting
- Keys to success
This is your session

WHAT WOULD YOU LIKE TO DISCOVER?
Properties of Hearing Aids vs ALDs

Hearing Aids

• Tailored to your specific hearing loss

Your hearing loss

• Pick up background noise

Your hearing aid

ALDs

• Amplify all sounds equally

Sounds

• Focus on single speaker

Sound
Components

- Individual
- Sound
- Environment
- Sound Source
- Microphones
- Transmitter and Receiver Systems
- Coupling Devices
- Telecoils
Components: Individual

- Hearing loss
 - binaural or monaural
 - severity (dB) and frequency (Hz)
 - conductive or sensorineural
 - may fluctuate or be progressive
- Age at onset of loss
- Acceptance of loss
- Speech reading ability
- Hearing aid/CI T-coil use
- Knowledge of and comfort with ALDs
Components: Sound

- Dimensions
 - Frequency
 - Loudness
- Impact on Speech
 - Intelligibility
 - Distance
 - Signal-to-Noise Ratio
 - Reverberation
AUDIOGRAM OF FAMILIAR SOUNDS
FREQUENCY IN CYCLES PER SECOND (HZ)
Components: Environment

- Light or dark
- Uncovered windows
- Distance from speaker
- Room acoustics and noise
Components: Sound Source

• Instructor giving a lecture

• Panel of speakers

• Video or audio recording

• Q&A from the audience
 • Hard of hearing student
 • Neighboring student
Components: Microphones

- Omnidirectional
- Unidirectional
- Lavaliere or Lapel
- Table top or conference
- Environmental mic
- Placement is vital!
 - Remember effect of distance on sound
Components: Transmitter and Receiver Systems

- FM
- Infrared
- Electromagnetic induction loop
- Hardwired systems
Components: Coupling Devices

- No hearing aid OR no T-coil
 - headphones
 - earbuds
- Hearing aid with T-coil
 - neckloop
 - silhouette or ear hooks
 - headphones
- Other methods
 - Direct Audio Input
 - FM Boot
Components: Telecoils

- **Hearing Aids: Microphone vs T-coil**
- Not all hearing aids have T-coils
- T-coils are not as sensitive as hearing aids
- Proximity is important
- Found in telephones & speakers
- Susceptible to electromagnetic interference
How to choose the right technology

WHICH SYSTEM IS BEST?
FM

- Uses radio waves
- Transmitter = radio station
- Receiver = radio
- Ex. Crib Monitor
FM Advantages

• Very portable
• Very easy to set up and use
• Offers great flexibility of movement
• Used indoors or outdoors
• Appropriate for mild to profound losses
• Receiver can be covered or put in pocket
• No fluctuation in strength of signal
FM Disadvantages

• Potential for outside interference
• Receivers and transmitters must be on the same channel
• Must be 1 free channel between systems used in close proximity
True or False?

• You can leave the room and still hear the presentation.
 True

• This system can be used indoors or outdoors.
 True

• You must have a receiver to use this system.
 True

• You must have a hearing aid to use this system.
 False

• You can use FM in multiple rooms in a building.
 Only if there is a free channel

• I can use my FM receiver with your FM transmitter.
 Only if they are on the same frequency
Infrared

- Uses infrared light
- Transmitter/emitter panel
 - Like a remote control
 - Signal is 60° cone shape
- Receiver
 - Like receiver on TV
Infrared Advantages

• Compatibility: Home receivers can be used with public transmitters
• No spillover means security
• Can be used in adjacent rooms
• Widest bandwidth and best sound reproduction
• Appropriate for mild to moderate/severe loss
• Not affected by radio transmission
Infrared Disadvantages

- Must have direct line of sight
- Can’t cover the receiver or put in pocket
- Indoor or evening use only
- High intensity or fluorescent lights can cause interference
- Large areas require multiple emitter panels
True or False?

- You can leave the room and still hear the presentation.
 False
- This system can be used indoors or outdoors.
 False
- You must have a receiver to use this system.
 True
- You must have a hearing aid to use this system.
 False
- You can use infrared in multiple rooms in a building.
 True
- I can use my IR receiver with your IR transmitter.
 True
Electromagnetic Induction Loop

- Uses electromagnetic fields of energy, e.g., power lines
- Transmitter - Loop of several wires
- Receiver
 - T-coil in hearing aid
 - Personal or desktop receiver
- Telephone and other devices
- As small as a neckloop or as large as an auditorium
Induction Loop Advantages

- Low equipment costs after installation
- Easy operation
- Lasts forever
- Induction receivers compatible with ALL loop systems
- Unobtrusive with T-coil hearing aid
Induction Loop Disadvantages

- Installation costs may be high
- Installation may not be possible in historic buildings
- Can’t assume everyone will have a T-coil
- Susceptible to electrical interference & spill over
- Must sit around looped area
- May be dead areas within loop
True or False?

• You can leave the room and still hear the presentation.
 False
• This system can be used indoors or outdoors.
 True
• You must have a receiver to use this system.
 True, but could be t-coils
• You must have a hearing aid to use this system.
 False
• You can use induction loops in multiple rooms in a building.
 True, only if room between looped areas
• I can use my loop receiver with your loop transmitter.
 True
Troubleshooting: General

- Batteries charged?
- Deductive reasoning
 - T-coil working? Try a phone call
 - Try different couplers
- Ultrasonic sensors
- Check with local HLAA group
- Cultivate an expert
- Call the company!
Troubleshooting: FM

• Are receiver & transmitter on the same station (frequency)?
 • Color code or number them
• Sources of interference?
 • Station drift - your system OR someone else’s
 • Police band, construction walkie talkies, pagers
• Must have one free channel difference if 2 different stations are being used in rooms next to each other.
Troubleshooting: Infrared

• Is anything blocking the line of sight?
• Are high intensity fluorescent lights present?
• Is the room bright, or is there direct sunlight?
Troubleshooting: Induction Loop

- Are there sources of electrical interference and spillover nearby?
- Portable systems can be a mobility hazard. Are wires protected?
Keys to Success for the Speaker

- Put mic close to your mouth
- Repeat questions from the audience
- Rephrase instead of repeat
- Don’t stand in front of windows or bright lights
- Face your audience when speaking
Keys to Your Success

• Batteries charged & T-coil working
• Proximity to T-coil
• Proximity to interference
 • just changing seats may help
• Continue to sit within 20 ft. of the speaker if you will use speech reading
• Interact with others about coping techniques - ALDA, HLAA, Beyond-Hearing
Keys to Your Success

- Make sure the volume is down when you first put the coupler on
- Experiment with different couplers, locations, and environments
- Get an environmental mic or hearing aid with mic/t/both position
- Check out equipment ahead of time
- While you are at it, check out the speaker’s too!
Review

• Evaluate the requirements of the setting and the properties of the equipment.
• Buy equipment from companies that will help you troubleshoot.
• Don’t forget the non-electronic communication tips!
It's QUESTION TIME!!
Thank you

You were a great group!
The Center for Sight & Hearing
8038 MacIntosh Lane
Rockford, IL 61107
800/545-0080 Toll free
815/332-6820 TTY
info@rockfordcenter.org